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Abstract. We re-examine the calculation of the bulk modulus of random networks with a
variable mean coordination〈r〉 that ranges from〈r〉 = 4 down through the phase transition
from rigid to floppy that occurs at around〈r〉 = 2.4. In contrast to previous workers, we use
random-network models, rather than depleted diamond lattices, so our results are more relevant
to glasses. We find that the bulk modulus behaves in a very similar way to that found previously
for depleted diamond lattices, with the bulk modulus going to zero at around〈r〉 = 2.4 with
an exponent of 1.4. In the course of this study we came across many examples of transitions
between different local minima, especially in networks with a low mean coordination. We discuss
and illustrate the nature of these metastable states and show that although there are differences
in the local minimumenergyassociated with these states, thebulk modulus(curvature around
the minimum) is essentially independent of which minima the system is in. We show that these
nearly degenerate local minima are associated with different local confirmations of very short
polymer chains.

1. Introduction

It has been suggested by Phillips (1982) and by Thorpe (1983) that the elastic properties of
random networks depend primarily on a single variable〈r〉: the mean atomic coordination.
Thorpe (1983) has predicted that a random covalent network isrigid for 〈r〉 > 2.4, and
floppy for 〈r〉 < 2.4.

To gain an insight into the elastic properties of glasses, He and Thorpe (1985) performed
a series of numerical simulations on computer-generated random networks. They calculated
the elastic moduli,c11, c44, and bulk modulusB, for a series of random networks with
varying mean coordination. These physical quantities couple very directly to the rigidity
phase transition. To build a large number of random networks, He and Thorpe utilized a
bond dilution of thecrystalline diamond lattice. They started from a 512-atom crystalline
diamond supercell that has〈r〉 = 4. The atoms interact via the Keating potential (1) (Keating
1966), withβ/α = 0.2:
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Here theα-term is associated with bond stretching and theβ-term is associated with bond
bending, andi andi ′ are neighbouring sites of the reference atom atl. Bonds were removed
in a random manner, maintaining the structure with periodic boundary conditions. When
a bond was removed,all of the α- and β-terms involving that bond were also removed
from the Keating potential. No dangling bonds were permitted, so an arbitrary atom can
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have 2, 3 or 4 bonds. No other possibilities were allowed. After a certain number of
bonds were removed at random, the structure was relaxed using the Keating potential. The
initial crystalline structure, which served as a kind of reservoir of bonds, was a stress-free
network. In this way a sequence of random networks was obtained over the whole range
of allowed mean coordinations. For each mean coordination, three samples were generated
with different statistics, by using three different random-number generators. Also, one of
these three samples had an enhanced number of twofold-coordinated atoms at the expense
of threefold sites. This served to validate the general prediction that the properties of the
network depend mainly on〈r〉 and not on other parameters.

Figure 1. Elastic moduli averaged over three different samples as a function of the mean
coordination〈r〉 for β/α = 0.2. These results are for bond-depleted diamond lattices as described
in the text. Solid lines are power-law-fit curves (from He and Thorpe 1985).

The computedf dropped linearly to zero at〈r〉 = 2.4, as predicted by the mean-field
theory, but it has a small tail at around the mean-field transition point. The elastic constants
c11 and c44, and the bulk modulusB = 1

3(c11 + 2c12), were computed using standard
techniques (Fenget al 1985, Feng and Sen 1984). The 512-atom supercell was redefined
in terms of an external strainε, and the elastic modulic were obtained from the elastic
energy1

2cε
2 after the network had been fully relaxed. The results of He and Thorpe (1985)

are shown in figure 1. He and Thorpe made a least-squares fit to the computed data and
found that, within the range 2.4 < 〈r〉 < 3.2, all three elastic constants were very well
approximated by the power law of the form (see figure 1)

c = constant× (〈r〉 − 2.4)1.5. (2)

Equation (2) did not fit the data well at larger values of〈r〉.
More recently, Franzblau and Tersoff (1992) performed computer simulations similar

to those of He and Thorpe (1985) to calculate the elastic constants of random networks.
They employed a direct algebraic approach in calculating the elastic constants (Franzblau
and Tersoff 1992). Their model has only 216 atoms, but all results were obtained with
the force-constant ratioγc ≡ β/α ranging over four orders of magnitude. These authors
also use the same method of bond depletion of a crystalline diamond lattice as used by He
and Thorpe (1985). The graphical results they present are forγc = 0.655 which is a value
appropriate for diamond. This value ofγc was a significantly larger value than the one
used in work of He and Thorpe which wasγc = 0.2 (appropriate to silicon or germanium).
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Franzblau and Tersoff found that for thisparticular valueof γc = 0.655, all three elastic
constants(c11, c44, and the other shear constantcs ≡ (c11− c12)/2) follow a power law for
the whole range of〈r〉:

c = constant× (〈r〉 − 2.394)1.40. (3)

In particular the elastic constantc44 follows a power law for the whole range of the parameter
γc that was studied:

10γc < γ < γc/1000. (4)

The exponent in the power law (3) varied from from 1.35 to 1.89 within the range ofγc
studied. The other elastic constants exhibit more complex behaviour, and in general do not
follow a power law over the whole range of〈r〉, but only do so in the vicinity of〈r〉 = 2.4.

Note that the results of Franzblau and Tersoff (1992) are consistent with earlier results of
He and Thorpe (1985) which were for a smaller value ofγc = 0.2. According to Franzblau
and Tersoff,c11 deviates significantly from the power law for smallγc, and so it is not
surprising that He and Thorpe (1985) were not able to fit thec11- andB-constants for the
whole range of〈r〉 with a power law.

Figure 2. A piece of the amorphous diamond structure, previously obtained (Djordjević et al
1995) and used here as the underlying structure for bond depletion.

The layout of the paper is as follows. In the next section, we describe the construction of
the depletedamorphousdiamond network and its subsequent relaxation. We then examine
the behaviour of the energy and the bulk modulus. Finally, we give an extended discussion
of the nature of the metastable states.



1986 B R Djordjević and M F Thorpe

Figure 3. Dots represent the total strain energy averaged over 10 different configurations, as a
function of the mean coordination〈r〉. The solid line is the best-fit power-law curve, obtained
using equation (2) with an exponent of 1.15. The energy is given in eV per atom.

2. Network construction and relaxation

As we have reviewed in the previous section, computer simulations of the elastic properties
of random networks have been performed using a crystalline lattice as the underlying
structure. In other words, the crystalline lattice is transformed into a random network
by removing a certain number of bonds at random. One should be very careful in creating
models of amorphous materials to avoid any crystalline memory in the final random network.
Thus, one can be suspicious about the trueamorphousnessof the random network obtained
by the random removal of bonds from an ideal crystalline structure. Conceptually, it is
more appropriate to start from an amorphous network, and then perform bond dilution on
it, thus creating a sequence of random networks with different mean coordinations. We
use a 512-atom covalent random-network model ofamorphousdiamond (Djordjevíc et al
1995) as this more realistic underlying structure (figure 2). Of course it would be better
still to build a new random-network structure for each value of〈r〉, but this is not possible
at present.

Our amorphousdiamond network is fully fourfold coordinated and has stress stored
in both the bond-stretching and bond-bending parts of Keating potential (1). This is an
important difference with respect to earlier work where the starting structure was a stress-
free crystalline lattice. In the present case, the removal of a certain number of bonds releases
a significant amount of elastic energy. Thus, while the internal strain energy is always zero
when the crystalline lattice is diluted, here the strain energy drops from the initial value that
it has in our amorphous diamond model, to nearly zero near the transition point〈r〉 = 2.4.
In fact, we do not expect the strain energy to become exactly zero at the mean-field critical
mean coordination, because at the critical point there are still many isolated rigid regions
which do not percolate, but which lock in a certain amount of strain energy. As they are
isolated, it will probably happen that they do not have any impact on the macroscopic
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Figure 4. The system is systematically redefined by increasing the size of the supercell (arrows).
The energy values all follow a parabolic curve, until a jump to a lower energy state occurs, and
the second parabolic curve is created. Energy is in eV per atom, with mean coordination
〈r〉 = 2.59.

stiffness of the structure as described by say the bulk modulus. However, this question
remains not fully resolved at this stage of our understanding of the rigidity–percolation
phase transition (Jacobs and Thorpe 1995, 1996).

We designed schemes that remove bonds from the amorphous diamond network in
several different ways. The obvious one does not impose any restriction except that it
forbids the creation of dangling bonds, thus fixing the possible atomic coordination as 2,
3, or 4. As a consequence, when a large number of bonds are removed, such as when
〈r〉 → 2, there are many polymeric chains (i.e. 2-coordinated sites) in the structure. Of
course, if one wants to decrease the mean coordination all the way to 2, many such long
linear chains must form. But if we are mainly interested in the region 2.3< 〈r〉 < 4.0, then
we can construct various random networks with the same〈r〉. For example, at〈r〉 = 2.59
we have madefour different structures. The first has already been mentioned—it has long
polymeric chains. The second has only short polymer chains that contain no more than
three twofold-coordinated atoms. The third has onlytwo-atom polymer chains, and in the
fourth all the twofold-coordinated atoms are isolated from each other. It was possible to
construct random networks with different types of chain for even lower values of〈r〉, but
we did not explore this in detail. For our calculation of the bulk modulus presented here, we
used only the first, non-restrictive style of bond removal, so polymeric chains are present
in all of our random structures at low〈r〉. This was the same scheme as was used by He
and Thorpe (1985) for the depleted diamond lattice.

The initial structure is a fully connected amorphous diamond network with a mean
coordination〈r〉 = 4.0. To avoid any possible correlations between our random networks
in a sequence of different〈r〉, we adopted the following strategy. First, we remove a small
number of bonds, say 20, relax the lattice using the Keating potential, and calculate the
mean coordination〈r〉, and the total strain energy. We repeat this process 10 times using
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Figure 5. The picture shows two different energy minima which are characteristic for amorphous
materials. Energy is in eV per atom, and the mean coordination〈r〉 = 2.59. This is a different
though similar configuration to that shown in figure 4

different random-number generators, and so produce 10 samples for a given〈r〉, over which
we perform an average. To further decrease the mean coordination, we do not continue
from the structure that has been previously obtained, but rather we go back to our fully
connected amorphous diamond network, and remove now 40 bonds, relax the diluted system
and calculate a new, smaller, value of〈r〉 for 10 different samples. In the next step, we
go back to the initial structure and remove 20 more bonds (i.e. 60 bonds in total), etc.
Each time that we increase the number of removed bonds, stress is released from the initial
amorphous diamond structure and the total elastic energy decreases.

It has been already reported (He and Thorpe 1985) that the relaxation process becomes
very difficult for approximately〈r〉 < 2.6, even when the crystalline stress-free lattice
is used for bond dilution. In that range of mean coordinations, He and Thorpe used an
extrapolation technique to obtain the behaviour at longer times (i.e. a larger number of steps
in the relaxation procedure) than could be easily probed. In our calculation, we did not
need to use any extrapolation techniques as we ran the relaxation processes for more steps.
In figure 3 we show the total strain energy as a function of the mean coordination〈r〉.

For large mean coordinations the relaxation is very fast, and only 500 relaxation steps are
needed. For small mean coordinations the number of relaxation steps has to be increased
considerably to achieve convergence. The required accuracy was kept constant, and the
number of relaxation steps was varied so that, at small mean coordinations, more than
50 000 steps were needed.

3. The bulk modulus

Repeating the basic approach presented in the work of He and Thorpe (1985), we calculate
the bulk modulusB ≡ (c11 + 2c12)/3 as a function of the mean coordination〈r〉. The
calculations are more difficult here as the equilibrium structure has to be obtained first by
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Figure 6. Dots represent our result for the bulk modulusB as a function of the mean coordination
〈r〉, for a bond-depletedamorphousdiamond lattice. Each dot is obtained from the curvature
of a parabola like one of those in figure 5, and averaged over 10 configurations. The solid
line represents the bulk modulus obtained by bond depletion of thecrystalline diamond lattice
(Franzblau and Tersoff 1992).γc = 0.655.

relaxation,beforethe elastic moduli can be found, by further relaxation.
The bulk modulusB was calculated in a standard way by redefining the size of the

supercell uniformly along all three coordinate axes. For each mean coordination, we have
included the supercell size as a variable in the relaxation subroutine. In this way the
structure is relaxed not only with respect to theα- andβ-forces in the Keating potential,
but simultaneously also with respect to the size of the supercell. Starting from that optimal
supercell size, we redefined the supercell four times—two times increasing the supercell
size sequentially, and two times decreasing the supercell size sequentially with respect to
the original optimal size which minimizes the total elastic energy. Bysequentially, we mean
that we take coordinates of the atoms when the supercell is of optimal size, and apply a
small uniform strain which slightly compresses the lattice. Then we relax the structure with
the Keating potential, calculate the new coordinates of all of the atoms, and apply the same
strain again, using the updated coordinates from the previous configuration. In this way we
obtain the values of the total strain energy atfive different supercell sizes. These points
should, in principle, form a parabola. The bulk modulusB is, up to the constant prefactor,
equal to the curvature of that parabola.

An interesting effect that arises when diluting our amorphous underlying structure is
that one can spontaneously and unpredictably jump from onemetastablestate to another. If
that happens, one has to reject that situation, and to repeat the search for parabolic energy
dependence again. This occurs very often and makes the computation very slow, if one
does not first find the minimum energy with respect to the supercell size (Mousseau 1996a).
This is why we implemented simultaneous minimization of the energy and the supercell
size. When that minimum is used to redefine the supercell, it is very rare that the system
jumps from one metastable state to another.



1990 B R Djordjević and M F Thorpe

Figure 7. The picture shows 512 atoms in their positions which corresponds to one of the states
described by parabolas in figure 5. The black bars represent the displacements of some atoms
which give rise to the existence of the second state. The mean coordination is〈r〉 = 2.59.

In figure 4 we show a typical jump in energy which occurs in these amorphous networks.
With careful examination we were able to reconstruct themissingparts of the two parabolas,
thus obtaining two different minima which correspond to two metastable states of the system,
as shown in figure 5.

It should be noted here that, once we find a smooth parabola which describes the total
strain energy dependence on the supercell size, we do not know whether that parabola
represents the lowest energy state. We compare the bulk moduli calculated from the two
different parabolas, and find that to good accuracy we obtain thesameresult for the bulk
modulus, regardless of which parabola we use. This is a very interesting observation whose
full consequences require further consideration.

In figure 6 we show our computed bulk modulusB as a function of the mean
coordination〈r〉. It is clear from figure 6 that the underlying initial structure, from which a
random network is obtained by bond dilution, does not make any significant difference in the
behaviour of the bulk modulus. Our amorphous starting network, upon the bond depletion,
produced a bulk modulus which almost exactly follows the power law of Franzblau and
Tersoff (1992) as given in equation (3). The small discrepancy for the middle range of mean
coordinations could be a consequence of the poor statistics that we had in our calculation
because of using only 10 samples for averaging. The other possibility is the fact that
Franzblau and Tersoff (1992) do not give the explicit value of the force-constant ratioγc
apart from stating that this is the diamond value. We have usedγc = 0.655 which is the
value that we had in our amorphous diamond model (Djordjević et al 1995).
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Figure 8. The picture shows polymeric chains of atoms in black that are involved in the motion
which gives rise to the existence of two states for a structure with〈r〉 = 2.59.

4. Metastable states

We have investigated the nature of the two states that appear in our bond-depleted amorphous
structure in more detail. It became clear that the value of the energy minimum does not
depend only on the supercell size, but also on the particularhistory of changes that were
imposed upon the system. We were able to identify the atoms whose motion is responsible
for the existence of these two energy states. Comparing the atomic coordinates of the
structure in these states we made a picture which shows 512 atoms in one of the states
while the black bars that are drawn represent the displacement of the given atom to another
position which it has when the structure is in theother metastable state. Thus a relatively
small fraction of atoms are repositioned which gives rise to the existence of a second
metastable state. This is shown in figure 7. Using the neighbour list for the structure, we
identified the connectivity of the atoms involved in that motion. It turned out that all atoms
that move belong to polymer chains, as shown in figure 8.

We spent some time searching for two states with a particularly small difference in
energy, hoping to find so-calledtunnelling modesthat exist in amorphous systems. A
common characteristic of most amorphous materials is a quasilinear term in the specific heat
at low temperatures. This has been interpreted phenomenologically in terms of a tunnelling
model, in which atoms, or groups of atoms, tunnel between the two lowest energy states in
a double potential well (Phillips 1972, Andersonet al 1972, Phillips 1985). This tunnelling
is a very subtle process which involves energy differences of about 10−4 eV (Cusack 1987).
Detailed microscopic models for the tunnelling process are still lacking. There were attempts
to create a tunnelling model which would explain the anomalous properties of vitreous silica
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(Vukcevich 1972), and an early computer simulation of tunnelling states in random-network
glasses for a-Si and a-Ge (Smith 1979). In spite of these and other attempts, a satisfactory
microscopic model for tunnelling modes still does not exist. We were not successful in our
search for tunnelling states in our random networks. From figure 4 one can see that the
typical total energy difference between the two states that we have in our structures is about
512× 0.0002= 0.1 eV which is athree orders of magnitudelarger energy than the one
typically involved in the tunnelling modes. Nevertheless, detailed analysis of the energy
minima in our random networks helped us to develop a scheme which finds the regions of
parabolic energy dependence on the applied strain, which was necessary for extracting the
value of the bulk modulusB.

Figure 9. The optimal supercell size which minimizes the total energy,Lmin, as a function of
the mean coordination〈r〉. The lengths are given in̊A.

An interesting result from our simulations is the behaviour of the optimal supercell
sizeLmin, i.e. that one which minimizes the total strain energy at a given〈r〉. In figure 9
we show that as more and more bonds are removed from the initial amorphous diamond
structure, the optimal supercell size first slightly increases until about〈r〉 = 2.7 is reached.
Further reduction of the mean coordination is followed by a sudden decrease of the optimal
supercell size.

We interpret this behaviour as a collapse of the network due to the presence of the long
linear polymeric chains. The twofold-coordinated atoms in these chains can come arbitrarily
close to each other, because of the lack of an exclusion volume that initially existed due to the
tetrahedral coordination of the amorphous network. To test this hypothesis we calculated the
pair distribution function for four different mean coordinations,〈r〉 = 2.44, 2.75, 3.06, 3.38
(figure 10). At small〈r〉 = 2.44 there are many peaks close to the origin, before the first
and second peak that correspond to the nearest-neighbour, and the next-nearest-neighbour
distance in the fully connected amorphous diamond, respectively. These additional peaks
that occur at very small distances are a consequence of thecollapseof the network when
the twofold-coordinated atoms in adjacent polymer chains come very close together. If we
artificially introduced an exclusion volume around each atom in the network, the collapse
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Figure 10. Pair distribution functions calculated for〈r〉 = 2.44 (a), 2.75 (b), 3.06 (c), 3.38 (d).

would not occur (Mousseau 1996b). Collapse is triggered by the stress that is present in the
initial amorphous diamond network. As we said, at small〈r〉, a large number of bonds are
first randomly removed from the fully connected amorphous diamond network. Because
of that, the stress in the network suddenly drops and the atoms are free to move toward
the equilibrium positions—which occurs in the process of relaxation. In earlier work of
He and Thorpe (1985) and of Franzblau and Tersoff (1992), where the underlying structure
for bond removal was a stress-free crystalline diamond lattice, such a triggering mechanism
was absent because the equilibrium random network has zero strain energy for all mean
coordinations.

5. Conclusions

Earlier calculations of the elastic properties of amorphous networks were done assuming
that the bond dilution of acrystalline lattice, and the subsequent relaxation, gives an
acceptable sequence of amorphous networks, which is suitable for the calculation of the
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elastic properties. In our simulations, we have used a trueamorphousstructure for bond
dilution, and calculated the bulk modulus as a function of the mean coordination. Our
results show that in the two cases the bulk modulus obeys practically the same power law,
which suggests that for the elastic properties, the topology of the initial structure (before
the bond dilution takes place) is not of any importance. It is themean coordinationalone
which determines the elastic properties.

We have only presented results for the bulk modulusB in bond-depleted diamond-like
networks. However there is little reason to think that other elastic moduli or different values
of the force-constant ratioγ = β/α would lead to any conclusions. It should be noted that
the singularity at around〈r〉 = 2.4, and hence the power-law behaviour, is rounded in reality
because of the existence of weak dihedral and other forces (Cai and Thorpe 1989).

We have described the difficulties encountered in dealing with a true amorphous structure
which contains large internal strains, which are connected with different energy minima,
i.e. different metastable states, that exist in amorphous materials and are associated with
polymeric chains of atoms, that cantunnelbetween different local minimum. It should be
noted that the tunnelling energy found here of 0.1 eV is comparable with a phonon energy
from the Keating potential. It may be that a more extensive search could turn up metastable
minima that are much closer in energy (10−4 eV) that would be candidates for tunnelling
states that are effective at low temperatures as observed in experiments.
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